

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 1

Programming style guide

2 December 2016

Aim of this document

Following a style guide will increase the readability of the code when other people look at them.

Some of these guidelines ensure that code is easily edited in more than one environment, from a

large screen to a tiny terminal; other guidelines set a standard format so that all programmers know

what to expect when looking at each other’s code. In some cases, these requirements are no better

and no worse than some of the alternatives, but mixed styles will reduce readability and reliability.

Contents

1. Project 1

2. Programming 3

3. Security 7

4. Database 9

5. HTML and CSS 11

6. JavaScript framework 12

1. Project

Folder structure

/db Logic

Database manipulation and logic (knowledge of the data model) per table in one separate

php-file. Never mingle with scripts producing output.

/inc Framework, cq function libraries

/config Configuration files

/_logs Log files, for verification and debugging.

/_cache Cached files

Names starting with ~ should be checked in into SVN, but will not be copied to the production

server.

Names starting with _ should not be checked in into SVN and not be synchronized with other

machines. They should be created on the production server, preferable by program code.

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 2

Files

Use lower-case in all file names.

All files with PHP code must have .php as extension.

Character set

All files and all output should be UTF-8, unless there is a specific reason to choose another

character set.

Use three-tier model (software architecture pattern).

Separate code in:

the user interface

functional process logic ("business rules")

framework: computer data storage and data access

Separate structure (html), styling (css) and behavior (JavaScript):

easier to read

easier to maintain

easier to find bugs

easier to re-use code

So instead of:

<select name="sid" onchange="window.location = 'index.php?sid=' +

this.value;" style="width:10em"></select>

Do so:

<style>

.text-xl{

 width:10em;

}

</style>

<select class="text-xl" name="sid" id="sid"></select>

<script>

document.getElementById('sid').onchange = function(){

 window.location = 'index.php?sid=' + this.value;

};

</script>

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 3

2. Programming

Indentation

Use tabs, not spaces, for indentation. Always indent blocks of code one tab (and only one tab)

beyond their parent structure.

Never combine multiple statements on the same line.

Opening braces go on the same line as their control structure. A closing brace on its own should

mean that this block has ended and there are no more conditions to test. For example:

foreach($arr as $value){

 printf("Value: %s
\n", $value);

}

Function Calls

No spaces between function names and the opening parentheses of the parameter list, and use

spaces after commas in parameter lists. Use spaces around operators.

$var = foo($bar, $baz, $quux);

Operators

Use spaces around operators (=+-*/%). In the case of a block of related assignments, more space

may be inserted to promote readability:

$short = foo($bar);

$long_variable = foo($baz);

$combined = $short . $longvariable;

$combined .= ' (c)2009';

Statements

Use parentheses (although PHP doesn't require them).

require_once('inc/sql.php');

Line endings

Use Unix line endings (\n). The easiest way to do this is to set your text editor to use Unix line

endings.

Arrays

Arrays should be formatted with a space separating each element and assignment operator:

$some_array = array('hello', 'world', 'foo' => 'bar');

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 4

Multi-line arrays

It is usually a good idea to keep lines short, which means that sometimes you’ll want your arrays to

span multiple lines. When you do this, put all of the data pieces on their own, indented, line. For

example:

fileExtensions = (

 ("php", "Dynamic PHP page"),

 ("html", "Static HTML page"),

 ("pdf", "Adobe PDF document"),

);

If the scripting language allows it*, put a comma (or appropriate item delimiter) on the last line.

This makes it easier to add new items and adjust the position of existing items.

* Note: not allowed in the JavaScript version implemented by IE 8-.

Control structure syntax (if, for, foreach, while, switch, etc.)

Always put conditional statements on their own line.

if($options['no-red']){

 $ball = str_replace('red', 'grey');

}elseif($options['use-rubber']){

 $ball = str_replace('plastic', 'rubber');

 $ball = str_replace('vinyl', 'rubber');

}else{

 $ball .= ' standard';

}

But also very short structures. Use

if(empty($product)){

 $product = new Product();

}

instead of

if (empty($product)) $product = new Product;

Variable and function names

Variable names and function/method names must be self- explanatory, and English based.

Variables must be consistently named. Use the same style throughout the code.

Give variables a prefix to indicate the variable type:

$aArray

$bBoolean

$iInteger or $nNumber

$oObject

$sString

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 5

Do not create obscure abbreviations. If referring to an IP address, $ip might be okay. But using $qr

to refer to a query result is not okay.

Both lowerCamelCase and underscore-style improve readability by marking where words begin and

end. If you do not have a preference, use lowerCamelCase.

//lowerCamelCase (preferred)

$newsTitle = $this->shortenTitle();

//underscore style

$news_title = $this->shorten_title();

Functions which return booleans should be named as a question (has, is, can ...).

isValid();

Use specific names, use

$aUsers = getUsers();

foreach($aUsers as $oUser){

 //

}

instead of

$result = getUsers();

foreach($result as $item){

 //

}

Class names

Use UpperCamelCase for classes.

class InvoiceRecords{

}

Constant names

Constant names must be self- explanatory and English based.

Constants must be consistently named. Use the same style throughout your code. When working on

someone else’s code, use their style.

Use all uppercase for constants.

define('SESSION_NAME', 'shoppingcart');

Code comments

Every file must have a comment at the top describing the file’s purpose. Write them so that people

can understand them on their own.

Use comments to describe the intent of a function or block. Comments should explain why this code

is here; the code itself should explain how it does what it does.

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 6

First write the comments, then the code.

Comments should be on a separate line immediately before the code line or block they reference.

if($bAuthenticated){

 //create session and redirect to homepage

 session_start();

 header('location: /');

}else{

 //show errormessage on login screen

}

When changing code maintained by more than one person or when changing someone else’s code,

always comment the changes you make directly above the line or function where you made the

change. Include the full date (yyyy-mm-dd), and your email address. Explain the purpose of the

change.

Do the same for any bug fixes you add to any code, even your own, after that code has been put

into production.

Magic numbers

Every variable you use should have a known purpose. Bare constants don’t display their purpose, so

don’t use them. For example, don’t do this:

$newsfeed->display(3, 6);

but code like this:

//display six news items of interest to faculty

define('ROLE_CUSTOMERS', 3)

$maxItems = 6;

$newsfeed->display(ROLE_CUSTOMERS, $maxItems);

Quoting strings

PHP uses single quotes and double quotes to define a text string. Single quote strings are known to

be faster because the parser doesn't have to look for in-line variables. Their use is preferred except

in two cases:

1. If the text contains single quotes

print("He's an administrator.");

2. If you need to have a combination of text and variables

print("Dear $name,");

But in the latter case, you should consider using

printf('Dear %s,', htmlentities($name));

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 7

Type declarations (PHP)

You are encouraged to use type hinting that was introduced with PHP 5. Type hinting allows you to

request function parameters passed to be of a certain type. If a wrong type is passed, PHP throws a

runtime error. Type hinting only works with objects or arrays, i.e. you can specify the exact class

name of which passed objects need to be an instance or you use the type array.

public function myFunc(MyClass $oObject, array $aValues) {

 //now we can safely assume an array

 foreach($aValues as $sValue){

 //...

 }

}

Note: callable is available as type declarations as of PHP 5.4.0.

Note: bool, float, int and string are available as type declarations as of PHP 7.0.0.

Be fail safe

Make sure you see all errors and warnings in the development environment

ini_set('display_errors', '1');

ini_set('display_startup_errors', '1');

error_reporting(E_ALL);

Test results before using them

if($aEmployers = listEmployers()){

 foreach($aEmployers as $oEmployer){

 //

 }

}

instead of

$aEmployers = listEmployers();

foreach($aEmployers as $oEmployer){

 //

}

Remove dead code

Easier to maintain the remaining code, better performance, less security risks.

3. Security

Never trust variables

Especially if it is a user contributed variable (_GET, _POST, _COOKIE, _SESSION, _SERVER).

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 8

htmlentities()

When displaying user contributed content in html, always use htmlentities() to escape special

characters. This content can come from a form ($_GET or $_POST), from a url, from a cookie or

sessions, or from the database.

When interpreting/parsing a url, apply urldecode() before htmlentities().

Validate user input

When possible force a variable in to the type you need before using it in SQL or in functions like

inlude().

- Convert booleans to 0 or 1.

- Use intval() for all number values and the numeric parameters of LIMIT.

if(isset($_GET['id']) && is_numeric(($_GET['id'])){

 $id = intval($_GET['id']);

 $sql = "SELECT * FROM `tablename` WHERE `id`='$id'";

}

- If identifiers (columns, tables or databases) or keywords (such as ASC and DESC) are referenced

in the script parameters, make sure (and force) their values are chosen as one of an

explicit set of options.

if(in_array($_GET['type'], array('date', 'name'))){

 $sField = $_GET['type'];

}else{

 $sField = 'date';

}

if(isset($_GET['sort']) && $_GET['sort'] == 'DESC'){

 $sOrderDirection = 'DESC';

}else{

 $sOrderDirection = 'ASC';

}

$sql = "SELECT * FROM `tablename` ORDER BY `$sField` $sOrderDirection";

Write properly quoted SQL

- Single quotes around values (string literals and numbers).

- Backtick quotes around identifiers (databases, tables, columns, aliases).

Properly escape the strings and numbers in SQL statements

- $db->escape for all values (string literals).

- $db->escLike to escape wildcard/regexp metacharacters for LIKE.

- Better avoid REGEXP/RLIKE.

- Limit the result-set if possible to limit the effect of a dos-attack.

LIMIT 1 if you only need one row.

Validation is not a substitute for escaping. No matter what validation steps you take when

processing the user input in your scripts, always do the escaping steps before issuing the query.

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 9

4. Database

Engine

Make sure the type of engine is explicitly defined, don’t rely on defaults.

Normally you’d use the MyISAM engine.

Charset and collation

Make sure charset and collation are explicitly defined, don’t rely on defaults.

All tables and string fields should be UTF-8, unless there is a specific reason to choose another

character set.

Normally you’d use the utf8_general_ci collation.

utf8_general_ci: compare strings using general language rules, case-insensitive;

utf8_general_cs: compare strings using general language rules, case-sensitive;

utf8_bin: compare strings by the binary value of each character in the string.

WHERE `firstname` = 'Bob', the different collations would return matches for:

utf8_general_ci: Bob, Böb, BÖB

utf8_general_cs: Bob, Böb

utf8_bin: Bob

Minimize database effort:

only put the fields you need in the SELECT

only ask the rows you need

limit the number of JOINS

limit the amount of duplicate information

only query the database if needed

COUNT(id) is faster than COUNT(*)

Naming Conventions

- Table names are plural

- Table and fields names are in English, all lowercase.

- Names of boolean fields consist of verb_noun:

use_shiftedrates, eligiblefor_partnerpension

- Names of foreign key fields must start with fk_ followed with the name of the object (singular)

it refers to.

fk_employee refers to employees.id

- Names of fields used to store a set of flags should start with set_

set_permissions, set_usergroups

- Names of timestamp fields end with _on

deleted_on, modified_on, oploaded-on

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 10

Primary key

Each table starts with a field `id`

`id` smallint(5) unsigned NOT NULL auto_increment

Foreign keys

The MyIsam database engine doesn't support foreign keys.

The data type of the foreign key field must equal the data type of the id field it is referring to

(smallint(5) unsigned in most cases).

Data types

Booleans tinyint(1) UNSIGNED

Sets of max 7 flags tinyint() UNSIGNED Don't use Mysql's SET datatype

Sets of max 15 flags smallint() UNSIGNED ~

Sets of max 31 flags int() UNSIGNED ~

IP-address int(10) unsigned Store with INET_ATON()

Read with SELECT INET_NTOA()

Rates and percentages decimal(4,2)

Amounts decimal(7,2)

Abbreviations varchar(10)

Guids varchar(16) use PHP function uniqid()

Phone numbers varchar(20)

Passwords (md5 hashed) varchar(32)

Short names varchar(50)

Long names, email addresses, urls varchar(250)

Anything longer than 255 characters text

Choosing the right integer

max int bytes bits max bit flags

TinyInt 255 1 8 7

SmallInt 65.535 64K 2 16 15

MediumInt 16.777.215 16M 3 24 23

Int 4.294.967.295 4G 4 32 31

BigInt 18.446.744.073.709.600.000 8 64 63

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 11

5. HTML and CSS

Test if the output is valid HTML and valid CSS.

- HTML should be valid HTML5 in XHTML notation, meeting WCAG 2.0 Level AA criteria.

- CSS should be valid CSS 3

Supported browsers are Internet Explorer 9.0 and the latest versions of Edge, Chrome, FireFox, and

Safari.

All JavaScript and CSS in external files. So no CSS en JavaScript in the HTML directly:

<div style="color:red;" onclick="showWarning()"></div>

Give HTML classes a meaningful name, not a description of the styling.

class="redborder"

clearer and better to maintain is:

class="error"

www.ylab.nl Lange Nieuwstraat 66, NL 3512 PL Utrecht | E: post@ylab.nl | T: +31 30 298 00 87 12

6. JavaScript framework

JQuery is the only framework used. Avoid plug-ins, especially when they include a user interface.

Extensions from JQuery.UI are ok.

Including the framework

Use a protocol relative link to a specific version on Google's CDNs. Provide a local fallback in case

the CDN is not available.

<script

src="//ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>

<script>window.jQuery || document.write('<script src="/yce/js/jquery-

1.8.3.min.js">\x3C/script>')</script>

<script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/jquery-

ui.min.js"></script>

<script>window.jQuery.ui || document.write('<script src="/yce/js/jquery-ui-

1.11.4.min.js">\x3C/script>')</script>

Aliasing the jQuery Namespace

(function($){

 //jquery is ready

 //---

 //---

 $(document).ready(function(){

 //document is ready

 });

})(jQuery);

